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On spatially-growing finite disturbances in 
plane Poiseuille flow 

By J. WATSON 
National Physical Laboratory, Teddington, Middlesex 

(Received 16 April 1962) 

Possible solutions of the Navier-Stokes equations are given representing certain 
finite disturbances in plane Poiseuille flow which vary with distance parallel to  
the bounding walls. These solutions are based on infinitesimal disturbances 
which vary exponentially with distance (upstream or downstream) instead of 
with time, and they are more closely related to the disturbances investigated 
experimentally than the corresponding ' time-dependent ' solutions. 

1. Introduction 
Contributions to  the non-linear theory of the mechanics of instability in either 

parallel flow or thermal convection have been given by, for example, Landau 
(1944), Meksyn & Stuart (1951), Gorkov (1957), Malkus & Veronis (1958), 
Stuart (1956a,b, 1958, 1960, 196lb), Veronis (1959), Benney & Lin (1960) and 
Watson (1960). For a detailed account of these and other works the reader is 
referred to Stuart (1961 a). 

In nearly all of the above papers the non-linear theory is based upon the 
standard linear theory, a detailed treatment of which is given by Lin (1955). 
The theoretical investigation into the stability of a given parallel (or nearly 
parallel) flow is undertaken on the basis of a linear theory in which the disturb- 
ance takes the form of a wave travelling with constant velocity andwith anampli- 
tude which is the product of a function of the distance normal t o  the boundary 
with an exponential function of time. The homogeneous equation and boundary 
conditions represent an eigenvalue problem for determining this wave velocity 
and the rate of amplification in terms of the wave-number (a) of the disturbance 
and the Reynolds number (R) of the flow. In  general a number of eigenvalues 
is theoretically possible for a given wave-number and given Reynolds number. 
For many of the basic flows considered (including plane Poiseuille flow), within 
a certain range of variation of wave-number and Reynolds number, it is found 
that, for given a and R, one, and probably only one, of these disturbances 
amplifies with time (supercritical disturbances), while outside this region all 
such disturbances decay (subcritical disturbances). We are therefore presented 
with the problem of retaining the full equations of motion and trying (a) to trace 
the growth of supercritical disturbances, possibly to a state of equilibrium, and 
(b) to trace subcritical disturbances backwards in time, possibly to some initial 
state of equilibrium. For the case of plane Poiseuille flow Stuart (1960) overcame 
an essential difficulty in these problems and showed how to obtain the most 
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important terms in possible solutions to one or the other (but not both) of these 
problems for points in the (a ,  R)-plane sufficiently close to the neutral curve. 
By a reformulation of the problem Watson (1960) was able to show how the full 
solutions could be obtained. 

These non-linear solutions represent disturbances which are periodic in 
distance parallel to the bounding walls and grow exponentially with time; on 
the other hand, the disturbances investigated experimentally are quasi-steady 
and vary in amplitude with distance downstream. An improved model is therefore 
obtained in this paper by finding the solutions based on a linear theory in which 
the disturbance is again a wave travelling with constant velocity but with an 
amplitude which depends exponentially on distance downstream (instead of on 
time). Mathematically this merely means that the roles of time and distance 
downstream and the roles of wave-number and frequency are interchanged; 
the characteristics of this linear theory parallel those for the standard theory and, 
for example, the characteristics of the neutral disturbances of one linear theory 
follow from the characteristics of the neutral disturbances of the other linear 
theory. Hence the methods used by Stuart (1960) and Watson (1960) may be 
used here to obtain possible solutions. Only the most likely possibility is treated 
and only the most important terms in the solutions are dealt with. It is pointed 
out that in experiments the disturbances are introduced at a finite point and the 
solutions obtained will not represent the experimental disturbances near this 
point; it might be expected, however, that the solutions represent disturbances 
which approximate to  the experimental disturbances sufficiently far downstream 
of this point. 

Experimental disturbances usually become three-dimensional downstream 
of the point at which the disturbances are introduced. This could be taken into 
account by considering three-dimensional disturbances in place of two-dimen- 
sional ones (cf. Stuart 1961 b; Benney & Lin 1960). 

For convenience we refer to the problem in which the amplitude of the dis- 
turbance varies with time as the ‘ time-dependent ’ case and to the problem in 
which the amplitudes varies with distance downstream as the ‘spatially- 
dependent ’ case. 

2. Linear theory 
In  two-dimensional, incompressible flow between parallel planes let I(: denote 

the distance parallel to the planes, z the distance normal to them measured from 
the channel centre, $ the stream function, R the Reynolds number and t the time. 
Then the vorticity equation may be written in the form 

where 

and the suffices indicate differentiation. All quantities have been made non- 
dimensional, the reference length (h) being half the distance between the planes, 
the reference velocity (V,) being the maximum velocity in steady flow and the 
reference time being h/U,. Then the Reynolds number is R = U,h/v, where v is 
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the kinematic viscosity. The basic steady flow considered is plane Poiseuille 
flow, for which 

$ = J B ( 1 4 ) d x .  0 (2.3) 

The other basic flow is plane Couette flow. This will not be considered here 
although a formal analysis can be made in a manner similar to that for Poiseuille 
flow (see Watson 1960). 

In investigating the stability of Poiseuille flow the type of infinitesimal dis- 
turbance considered is a wave travelling in the direction of flow having a stream 
function of the form 

1 ~ .  = c@-,(z) eia(z-cO + &Jl(z) e-i&-EO, (2.4) 

where a is real [from the symmetry of (2.4) it  is evident that there will be no loss 
in generality if a is assumed to  be positive], the symbol N denotes a complex 
conjugate, and C is an arbitrary constant. The linear equation for $ l ( x )  is the 
Orr-Sommerfeld equation, 

where an accent (superscript) indicates differentiation with respect to x and where 
u, = 1 - 9. This equation, together with the homogeneous boundary conditions 
corresponding to the vanishing of the velocity components on the planes, con- 
stitutes an eigenvalue problem to determine c = c, + ici as a function of a and R 
(c  will in general be complex). There are two fundamental sets of solutions, the 
set of those solutions which are even functions of z and the set of solutions which 
are odd functions of x ;  any solution is a linear combination of a solution from 
each set. Now from physical considerations the given flow will be stable if R is 
sufficiently small. Instability (corresponding to eigenvalues with ci > 0 )  has 
been found only for the set of solutions even in x and, corresponding to any given 
point (a,  R) in the unstable region of the (a, @-plane, only one eigenvalue with 
ci > 0 has been found (it has also been found that c, is positive for this disturb- 
ance). Hence the instability characteristics can be found by considering the 
even solutions of (2.5). Since the equation and boundary conditions are homo- 
geneous, $-, is determined apart from an arbitrary multiplicative factor. Since 
C is arbitrary, can be made definite by imposing the normalizing condition 
$1(0) = 1. The neutral curve in the (a ,  R)-plane separating stable from unstable 
disturbances is determined by those solutions for which ci = 0. This neutral 
curve has been found (see Lin 1955). Having selected the desired eigenvalue 
and eigenfunction, Stuart (1960) and Watson (1960) have used (2.4) as a basis 
for a time-dependent non-linear theory. 

This, however, is not a suitable model for the disturbances investigated experi- 
mentally, which are quasi-steady and vary in amplitude with distance down- 
stream. A better model is obtained by first introducing the new linear theory 
below and using this as the basis of a non-linear theory similar to the time- 
dependent one. The type of disturbance considered here is again one travelling 
in the direction of flow but having a stream function of the form 

- 

+ = ~ $ ~ ( x )  ei(az-PO + &J,(X) e-i(Hz-Pt), (2.6) 
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where ,8 is real [from the symmetry of (2.6) there is no loss of generality if p is 
assumed to be positive] and C is an arbitrary c0nstant.t The linear equation 
for $1 is 

L(a,p)$., = (zl-p/a) ($~-a2$l)--U.;$1+(i/aR) (llr";"-2u2$/1"+a4$,) = 0, 

and the boundary conditions are the same as in the time-dependent case-the 
disturbance velocities vanish on the walls so that and +; vanish a t  z = i 1. 
This eigenvalue problem will give a = a? + ia, as a function of /3 and R (a  will be 
complex in general). The given flow will be unstable to disturbances of the form 
(2.6) if, for some values of ,8 and R, an eigenvalue u can be found with a, negative. 
If a, is put equal to zero in (2.7) then it is obvious that the required neutral 
solutions of (2.7) are found immediately from the neutral (c, = 0 )  solutions of 
(2.5), the only solutions which are not identically zero being the solutions which 
are even functions of z. Since C is an arbitrary constant we can make the function 
$1 definite by imposing the normalizing condition e1(O) = 1. Then the neutral 
solutions of (2.7) will be identical with the neutral solutions of (2.5) (ar will of 
course be positive for these disturbances). The neutral curve in the (p, R)-plane 
for disturbances (2.6) follows immediately from the eigenvalues for the neutral 
disturbances of (2.4). Since instability can only occur for *l continued analytic- 
ally from the neutral solutions into solutions with a complex and p real, @1 
remains an even function of z. It might be expected that (i) for any given values 
of p and R such that the point (p, R) lies inside the neutral curve, we shall find 
one and probably only one eigenvalue a with ai negative, in which case (2.6) 
will be an unstable disturbance, and (ii) for any given p and R such that the point 
lies outside the neutral curve, we shall find no unstable disturbances. For points 
near the neutral curve Gaster (1962) has pointed out that the above conjectures 
are true and that it is probable to prove in this case that the transformation is 
based on a group velocity. Earlier Schlichting (1933) used the group velocity in 
this way although apparently without mathematical proof. As in the time- 
dependent case these two regions in the (P,R)-plane will be called the super- 
critical and subcritical regions respectively. The stream function (2.6) contains 
the amplitude factor e-aix so that the linear theory can be said to be valid only 
when e-"iX is very small. This will be true only far upstream in the supercritical 
case (ai < 0 )  and far downstream in the subcritical case (ai > 0). 

(2.7) 

3. Non-linear theory 
The stream function (2.6) involves the sum of terms of the form f(x, z )  e-%It 

and F(x,  z )  e*@. As the growth of the disturbance is traced, downstream in the 
supercritical case, upstream in the subcritical case, each of these terms interacts 
with itself, with the other and with the main flow, modifying them and generating 
higher harmonics of the formf,(x, z )  e@t (n = 3, . . .). It therefore appears 
permissible to expand the stream function of the flow when non-linearity is 
included as a Fourier series in t .  

2, 

t This type of disturbance has been used, in connection with another problem, by 
M. Gaster (1962). 
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Let the stream function for the flow be represented by the Fourier series 
m 

@(x, x ,  t )  = $ -t $‘ = $(x, z )  + 2 {c$(~)(x, x )  e-nibt + $(n)(x, x )  enibt>. (3.1) 

As the amplitude of the disturbance tends to zero $ tends to the undisturbed 
stream function, 

n= 1 

J+Z, 

and the other part of the right-hand side of (3.1) tends to the linear disturbance 
stream-function (2.6). When the disturbance has non-zero amplitude the sum 
on the right-hand side of (3.1) represents the stream function of the disturbance 
while $ is the mean stream function, where the mean is taken with respect to t 
over the period of the disturbance, 2n/B. The expression (3.1) is to be substituted 
into (2.1) and the Fourier components are to be equated. The equation arising 
from equating the terms independent o f t  is equivalently found by taking the 
mean of equation (2.1), and this can be written in the form 

The term ($;VZ$h - $kVz$;) is the Reynolds-stress term representing the effect 
of the disturbance on the mean motion; in the linear theory i t  is neglected. The 
disturbance equation is found on subtracting (3.2) from (2.1) and it can be written 
in the form 

(3.3) 

where (3.4) 

In the disturbance equations x is the non-linear part, which is neglected in the 
linear theory. 

Equations (3.2) and (3.3) have to be solved for $ and 9‘. When the expression 
for $‘ [equation (3. l)] is used and components of the Fourier series are separated 
we obtain the equations 

V2$;+$,V2$j: +$~V2$x-$xV2$L- $j.V2$,++x = R-’V4$’, 

x = 4; vz$; - 4; VZ$L - ($4: vz$; - $; v”;). 

- (3.5) 
$2v2$p) - niaTcV2$(n) + $$n) Vz$x - $x Vz$$n) - $P Vz$, - R-lV4$(70 

n- 1 m 

ni=l m=nSl 
= - ($p vz$$-m) - $&m) Vz$$n-m)) - c ($$m) vz$&m-n, - $&m) vz$(m-n) 2 )  

m 

m=l 
- 2 ($im)V2$(n+m)- $z -(m) v 2 $2 (n+m)) (n 3 1). (3.6) 

In (3.6) i t  is understood that the summations from rn = 1 to m = n- 1 are to be 
omitted when n = 1. 

The boundary conditions to be imposed are that the velocities (@,, -@x) 
vanish on the bounding planes, x = 1, a t  all times and for all x. This gives 

$z = gX = $$n) = $in) = o at z = _+ 1 for all x 
- 

or, for all x, $z = $p) = 0, $ and $(n) const. at  z = i: 1. (3.7) 

In  addition an ‘initial’ condition has to be imposed: as the amplitude of the 
disturbance tends to zero, the disturbance must tend through the infinitesimal 
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disturbance (2.6) to zero (as x -+ 
or supercritical). Since the undisturbed state is attained as x -+ 
that the boundary conditions (3.7) for all x aret 

00, according to whether the flow is subcritical 
cx) it  follows 

- f l  
q5z = = #n) = 0,  ;B = Zldz at z = 2 1. (3.8) 

0 

It follows from (3.8) that the volume flux is an absolute constant. Following 
earlier work (see Watson 1960) we seek a solution of (3.5), (3.6) in the form 

W 

~ ( n ) = A n ( + n +  m= 2 1 IA12m$nm) (n 2 (3.9) 

and 

(3.10) 

(3.11) 

where the ‘amplitude’ A is a function of x only, $,, $nm, f, are functions of z 
only and am (m >, 1) are constants to be determined. That a, = ia follows from 
the ‘initial ’ condition. It can readily be shown that the equation for [ A  [ is 

W 

d+Y = 2[A(2 2 a,,[Ap (a, = a,,+iami), (3.12) 
ax m= 0 

from which it follows that [AIz is monotonic in x between zero and the first 
positive zero of the right-hand side of (3.12). 

It can be shown that, when (3.9)-(3.11) are substituted into (3.5) and (3.6), 
an infinite set of equations is obtained in which each term in each equation is the 
product of a power of ] A  l 2  with a function of z. Since ] A  l 2  varies with x in a range 
of IA12includingzerothen,ineachequation, thecoefficientsof IAI2”(m = 1,2,  ...) 
must cancel. This gives the differential equations for the functions of z in (3.9) 
and (3.10); these differential equations must be solved in a definite order. Until 
these functions of z have been calculated it is not known exactly how they behave 
for small values of ai. However, let us assume that the most likely behaviour 
does occur (of. Watson 1960). Then the terms in (3.9) to (3.11) decrease in magni- 
tude as m increases and the first-order solution is obtained by retaining terms up 
to order IAI3 and neglecting smaller-order terms. We therefore need to know 
$11, $2, $3, f, and a, (as well as $1 of course); of these functions must be 
calculated first and $11 and a, last. The equations for these functions are 

(3.13) 

(3.14) 
L ( 4  P, $1 = 0,  

L(24 2P) @2 = Wl$.;” - $;$3 
L ( 3 4  3P) $3 = +[$1(?%l- 4a2$9 

= in[$;($; - a2$J - 

+ 2$2($: - a’$;>- 2 $ ~ ( $ ~ - 4 a 2 $ 2 ) - $ ~ ( ~ ; - ~ ’ ~ ~ ) 1 7  (3.l5) 

B-‘(fjv + 8a: f: + l6a: fl) + 2ai{Zl( f;’ + 4af fl) - 21.; fl) 
- &2&)] -iq$;($; - E2$,) - &($? - a2$;)], 

(3.16) 
(3.17) 

f It appears reasonable from physical considerations that the boundary and ‘initial’ 
L(% P )  $11 - ( 2 W 4  9($11> = - (ialla) d@l) + gll, 

conditions which we have imposed are the correct boundary conditions. 
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where 

g($) { - Zi + [4i(a + ia,)/R]} $" + {Zl(3a2 + 6iaai - 4af) - 2P(a + ia,) + Z; 
- [4i(a + ia,)/R] (a2 + 2iaai - 2 4 )  $ 

and 
g,, = f:' + 4af f;) - af;($; - a2$1) + 2ia, f1($Y - a";) 

- %LX$hi(,f; + 4CX;fl) f 2a?lr,($? - di2$i) - 2C$i($; - 4a2$,) 

+ di$;($: - 28,) - a$,($: - 4a2$;)]. 

The boundary conditions corresponding to these equations have still to be 
given. Since the boundary conditions (3.8) have to be satisfied for all values of x 
and so for all 1.41 sufficiently small, then it is easily shown from (3.9) to (3.11) 
and (3.12) that the boundary conditions are 

$lm.= $A = $nm = $hm= f, = f& = 0 at z = & I .  (3.18) 

Since $l is an even function of z i t  is readily seen from (3.14) and (3.18) that $2 

is odd, from (3.15) and (3.18) that $ha is even, from (3.16) and (3.18) that fl is 
odd and from (3.17) and (3.18) that $11 is even. The equations (3.13) to (3.17) 
need therefore only be solved between z = 0 and z = 1, when the boundary 
conditions are 

$1 1 -  - 1c." 1 = $ 2 -  - 2 -  - $1 3 -  - II." 1 -  l - $ i l = $ ~ l = O  at Z = O ,  = f - f " -  

$ 1 -  - $ I - $  1 -  2 -  - $ I - $  2 -  3 -  -$Lf 3 -  l = f i = $ l l = $ i l = O  a t  z = l ,  

together with the normalizing condition $1(0) = 1. 
Now if we write $11 in the form 

$11 = (a1/2aO $1 + $113 (3.20) 

then, from (3.17), gl1 satisfies 

wf-, P)  $11 - (ziai/a) 9($11) = 911 (3.21) 

and gll satisfies the same boundary conditions as $ll. The most likely case, 
which is considered here, is when qI1 is expanded in the series 

- 
lirll = ( 1 /ai) ?I.lr" + $hi;) + a< $@ + . * . , (3.22) 

where the functions on the right-hand side of (3.22) are bounded, satisfy 

L(a, /I) $li" == 0, 

L(a, PI $i!' = (2i/a) g($iil') + gii, 
(3.23) 

(3.24) 

L(a,P) $9 = ( 2 i / a ) s ( $ W  (r 2 l ) ,  (3.25) 

respectively, and satisfy the same boundary conditions as $ll. To the order 
which is being considered it is necessary to find the required solutionk of (3.23) 
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and (3.24) only, for which it is necessary to use (3.25) with r = 1. Define x3 to 
be the solution of the Orr-Sommerfeld equation satisfying 

x3 = xk = 0, = 1, &'= O at  x = O (3.26) 

and @ by @ = (x: - a2x3) - {xa 1) - a2x3(1 I> (9; - E211.1)/W1 It (3.27) 

(which satisfies the equation adjoint to the Orr-Sommerfeld equation and 
satisfies the same boundary conditions as $,). Then the required solution of 
(3.23) is (see Stuart 1960 and Watson 1960) 

11.k') = 
where h is given by 

h = -a @g dx 22 @g(@,)dz. Jol l1 I -Io, 
(3.28) 

(3.29) 

The right-hand side of (3.24) is therefore a known even function and since the 
solution of (3.24) is to be an even function, it must have the form 

11.1"1' = A@,+ BX3 + p, (3.30) 

where P is any even particular integral of (3.24). Either of the two conditions at 
z = 1 will determine Band the other condition a t  z = 1 will be satisfied. It follows 
from equation (3.25) with r = 1 that the constant A is given by 

(3.31) 

so that both $$il) and 11.i;) can be found in this way. The required solutions of 
(3.25) for any r can be found in a similar manner. It can be shown that a, is 
arbitrary so that in particular it can be chosen to have the value 

a, = - 2 4  (3.32) 

when, from (3.20), 11.1, = 11.p + a&p + . . . . (3.33) 

This choice of a, makes both a, and $,, bounded, however small ai may be, 
To the order considered 

11.11 = 11.1"1'. (3.34) 

When@,, $2, q93, f,, 11.i:) and a, have been found then the solution (3.91, (3.10) 
will have been found up to terms of order (AI3 after the function A has been 
calculated from (3.11) retaining only the terms of order (AI3. It will therefore 
be necessary to solve 

from which, of course, 
dA/dX = A ( i a + ~ , l A ] ~ ) ,  (3.35) 

dlAI2/dx = 2(A12(-ai+al,.lA12). (3.36) 

t The analysis in this paper does not hold near points in the (p, R)-plane where there 
is a complementary function of (3.14) or (3.16) which satisfies the boundary conditions or 
a t  points where either Vi(1) = 0 or @l(0) = 0. At a point where $1(0) = 0 the normalizing 
condition can be taken as @;(O) = 1 when @l x3, and the analysis remains unaltered if, 
in the text, x3 is replaced by xr, the solution of the Orr-Sommerfeld equation satisfying 

x 1 -  - l  9 x;=x;=x;"=O at z = O .  
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It readily follows from (3.36) that 

I A 12 = - ai K e--2ais/( 1 - a,, K e-2aix) , (3.37) 

where K is an arbitrary constant of integration. Therefore as / A /  -+ 0,  that is, 
as aix+co, IAI2 - -aiKe-2aiz. But since A Ceiax as 1.41 + O  then we can 
say that C and K are related by 

-aiK = ICl2. (3.38) 

The equilibrium amplitude, lAle is found (to the first approximation) from 
(3.37) to be given by 

(3.39) I A 1: = %/a,?- 

X 

FIGURE 1. Possibility for spatial growth of amplitude in plane 
Poiseuille flow-subcritical case (alr > 0). 

X 

FIGURE 2. Possibility for spatial growth of amplitude in plane 
Poiseuille flow-supercritical case (al, < 0). 

If u,, turns out to be positive then this equilibrium amplitude can be found only 
in the subcritical case (a, > 0) (for the behaviour of IAI2 with distance, see 
figure l ) ,  while if a,, is negative the equilibrium amplitude can be found only in 
the supercritical case (a, < 0 )  (see figure 2 for the behaviour of 1.4 I with distance, 
but note that, in experiments, disturbances are introduced at  a finite value of x). 
Now K or (CI2 is arbitrary because it corresponds to the arbitrariness in the 
position of the origin of the x-axis. There will therefore be no loss in generality 
ifwe assume that ICI2 = lai[ so that from (3.38), K = -sgna, and (3.37) becomes 

(3.40) I A I = I ai I e-2aiz/(  1 + alr sgn a, e--2ais). 
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Also the argument of C is arbitrary because it corresponds to the arbitrariness 
in the position of the origin of time (we have in effect already specified the origin 
of the x-axis). There will therefore be no loss in generality if we assume that the 
argument of C is zero. Then from (3.35) it is readily shown that the argument 
of A follows from 

AIA = e % X ,  (3.41) 

where (3.42) 

is the wave-number of the disturbance and it changes with distance parallel to 
the walls. In  deriving this result from (3.35) and its complex conjugate, (3.36) 
and (3.40) have been used. This has the proper behaviour as A --f 0; it  is easily 
seen that y + ar as A -+ 0. Also in the equilibrium state 

y = a, - (ali/2a1,x) log (1 + a,, sgn ai e--2ajx) 

(3.43) 

The speed X of the disturbance also varies with distance parallel to the walls 
and is given by 

but the frequency does not change. 
When an equilibrium state exists, as in the case we are considering, then the 

same analysis shows that there is a similar disturbance for IA I > I Ale, although 
a second equilibrium state probably could not be calculated. If such equilibrium 
states exist in the subcritical region (ai > 0) then these disturbances amplify 
with distance downstream, so that the states of equilibrium are unstable, showing 
that, although the basic flow is stable to infinitesimal disturbances in this region, 
it can be unstable to certain finite disturbances. On the other hand, if such 
equilibrium states exist in the supercritical region (ai < 0 )  then these dis- 
turbances decay with distance downstream to  the states of equilibrium, so that 
the states of equilibrium may be stable to infinitesimal disturbances. 

In  the problems considered by Stuart (1960) and Watson (1960), the flow is 
periodic in x and the mean is taken with respect to x; if we take the mean of the 
continuity equation and apply the boundary condition that W = 0 on the walls, 
it  follows that W = 0 so that the mean flow remains parallel for all times. Here, 
however, the mean is taken with respect to t and it does not follow that the mean 
flow is parallel. I n  fact, from (3.10), W = - 3% varies with x so that the mean flow 
is not parallel. If an equilibrium state exists then, as it is approached, (A1 will 
tend to a constant and W will tend to zero, that is, the mean flow will become 
parallel. Another point is that in the time-dependent problem the mean pressure 
gradient had to be specified to get a unique solution (for example, the mean 
pressure gradient could be assumed to  be an absolute constant or it could be 
chosen to make the mass-flux constant). In  the spatially-dependent problem, 
however, no corresponding condition need be imposed-the mass flux is constant. 

By comparing this analysis with the time-dependent growth analysis it can 
be shown that, in the limit as the neutral curve is approached, the value of a, in 
one case can readily be obtained from the value of a, in the other case. 

s = Ply, (3.44) 
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